

Locating All Minima of a Smooth Function Without Access to its Derivative

Jeffrey Larson Stefan Wild

Argonne National Laboratory

July 16, 2015

Motivation

▶ We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

 $l \le x \le u$
 $x \in \mathbb{R}^n$

▶ High-quality can be measured by more than the objective.

Motivation

▶ We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

 $l \le x \le u$
 $x \in \mathbb{R}^n$

- High-quality can be measured by more than the objective.
- ▶ Derivatives of *f* may or may not be available.

Motivation

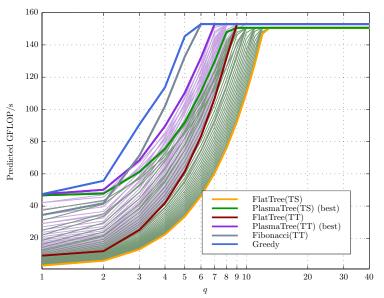
▶ We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

 $1 \le x \le u$
 $x \in \mathbb{R}^n$

- High-quality can be measured by more than the objective.
- Derivatives of f may or may not be available.
- ► The simulation *f* is likely using parallel resources, but it does not utilize the entire machine.

Why concurrency? Tiled QR example



[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain $\mathcal D$ if and only if the algorithm generates iterates that are dense in $\mathcal D$.

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain $\mathcal D$ if and only if the algorithm generates iterates that are dense in $\mathcal D$.

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D

Or possibly wait a long time (or forever)

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
 - concurrent evaluations of f
- Or possibly wait a long time (or forever)

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on a domain \mathcal{D} if and only if the algorithm generates iterates that are dense in \mathcal{D} .

- Either assume additional properties about the problem
 - convex f
 - separable f
 - ▶ finite domain D
 - concurrent evaluations of f
- Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates iterates which are dense in the domain.

Given some local optimization routine \mathcal{L} :

Algorithm 1: General Multistart

for k = 1, 2, ... **do**

Evaluate f at N points drawn from \mathcal{D}

Given some local optimization routine \mathcal{L} :

Algorithm 1: General Multistart

for k = 1, 2, ... do

Evaluate f at N points drawn from \mathcal{D}

- Get to use problem specific local optimization routines.
- ▶ Possibly multiple levels of parallelism (objective, local method, global method); \mathcal{L} may involve many sequential evaluations of f...

Given some local optimization routine \mathcal{L} :

Algorithm 1: General Multistart

for k = 1, 2, ... do

Evaluate f at N points drawn from \mathcal{D}

- Get to use problem specific local optimization routines.
- Possibly multiple levels of parallelism (objective, local method, global method); \mathcal{L} may involve many sequential evaluations of f...
- Which points should start runs?
- ▶ If resources are limited, how should points from each run receive priority?

Given some local optimization routine \mathcal{L} :

Algorithm 1: General Multistart

for k = 1, 2, ... do

Evaluate f at N points drawn from \mathcal{D}

- Get to use problem specific local optimization routines.
- Possibly multiple levels of parallelism (objective, local method, global method); \mathcal{L} may involve many sequential evaluations of f...
- Which points should start runs?
- If resources are limited, how should points from each run receive priority?
- Ideally, only one run is started for each minima.
- \triangleright Exploring by sampling. Refining with \mathcal{L} .

Given some local optimization routine \mathcal{L} :

Algorithm 2: MLSL

for k = 1, 2, ... do

Sample f at N random points drawn uniformly from \mathcal{D} Start \mathcal{L} at any sample point x:

- that has yet to start a run
- ▶ $\nexists x_i : ||x x_i|| \le r_k$ and $f(x_i) < f(x)$

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57-78, 1987]

Given some local optimization routine \mathcal{L} :

Algorithm 2: MLSL

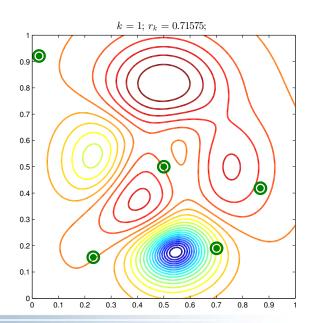
for k = 1, 2, ... do

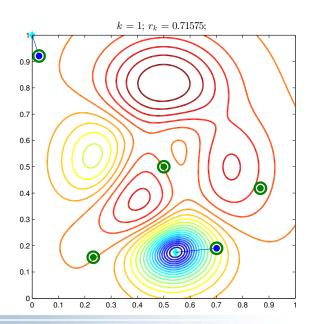
Sample f at N random points drawn uniformly from \mathcal{D} Start \mathcal{L} at any sample point x:

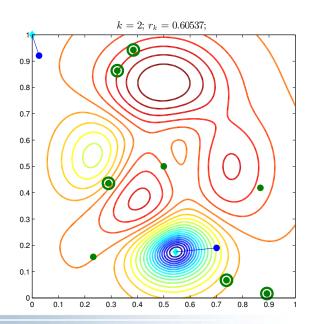
- that has yet to start a run
- ▶ $\nexists x_i : ||x x_i|| \le r_k$ and $f(x_i) < f(x)$

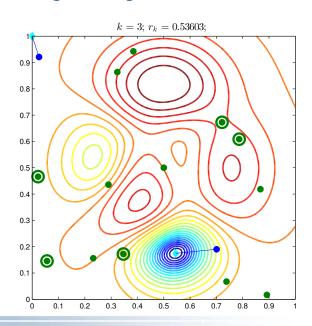
[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57-78, 1987]

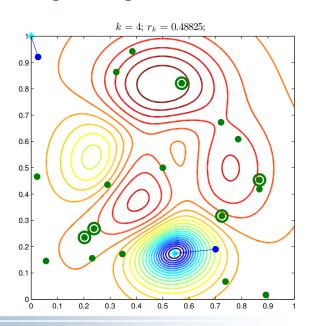
- ▶ Doesn't naturally translate when evaluations of *f* are limited
- ightharpoonup Ignores some points when deciding where to start ${\cal L}$

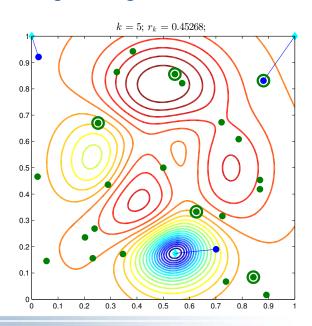


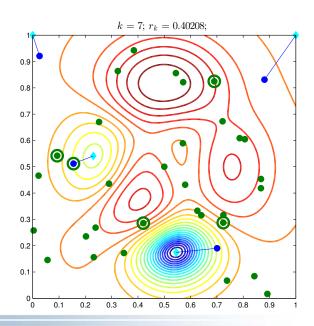


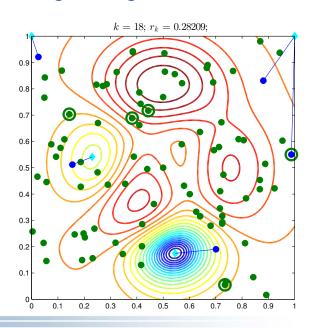


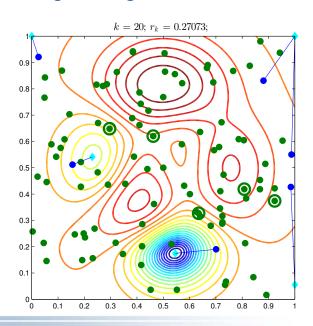


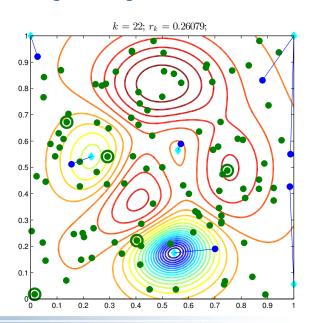












- ▶ $f \in C^2$, with local minima in the interior of \mathcal{D} , and the distance between these minima is bounded away from zero.
- \blacktriangleright $\mathcal L$ is strictly descent and converges to a minimum (not a stationary point).

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right)} \frac{\sigma \log kN}{kN}$$
 (1)

Theorem

If $r_k \to 0$, all local minima will be found almost surely.

- ▶ $f \in C^2$, with local minima in the interior of \mathcal{D} , and the distance between these minima is bounded away from zero.
- \blacktriangleright $\mathcal L$ is strictly descent and converges to a minimum (not a stationary point).

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}(\mathcal{D})} \frac{\sigma \log kN}{kN}$$
 (1)

Theorem

If $r_k \to 0$, all local minima will be found almost surely.

If r_k is defined by (1) with $\sigma > 4$, even if the sampling continues forever, the total number of local searches started is finite almost surely.

$$\hat{x} \in \mathcal{S}_k$$

- (S2) $\nexists x \in S_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

MLSL: (S2)-(S4)

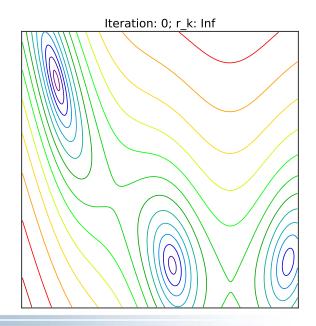
$$\hat{x} \in \mathcal{S}_k$$

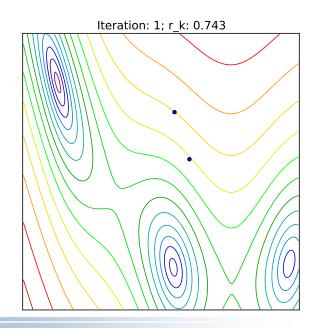
- (S1) $\nexists x \in \mathcal{L}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

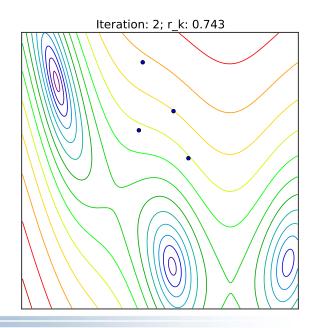
BAMLM: (S1)–(S4), (L1)–(L6)

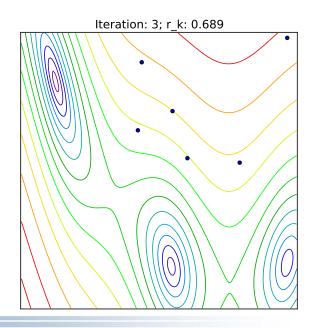
$$\hat{x} \in \mathcal{L}_k$$

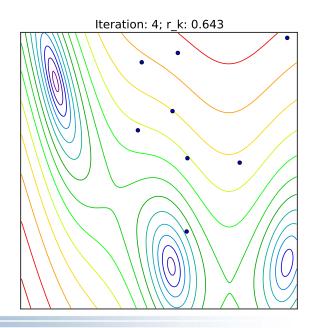
- (L1) $\nexists x \in \mathcal{L}_k$ $[\|\hat{x} - x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L3) \hat{x} has not started a local optimization run
- (L4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima
- (L5) \hat{x} is not in an active local optimization run and has not been ruled stationary
- (L6) $\exists r_k$ -descent path in \mathcal{H}_k from some $x \in \mathcal{S}_k$ satisfying (S2-S4) to \hat{x}

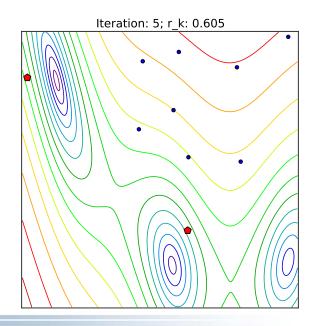


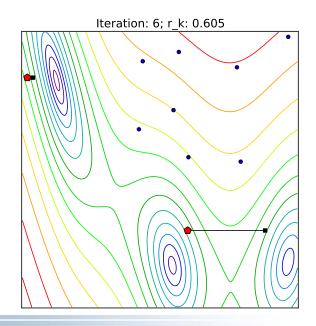


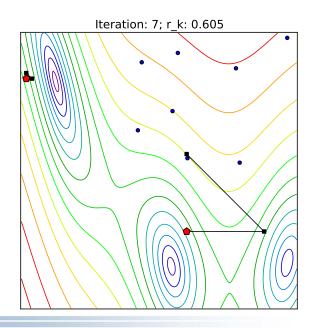


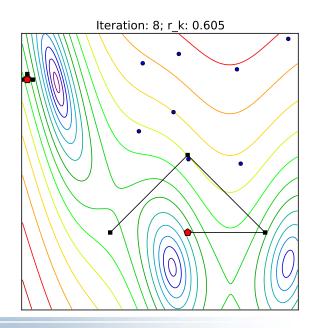


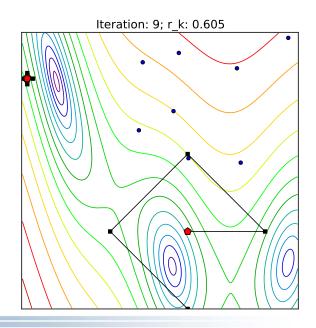


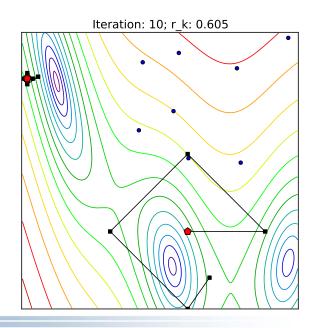


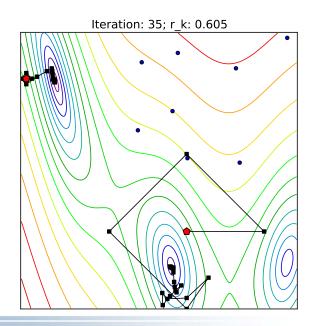


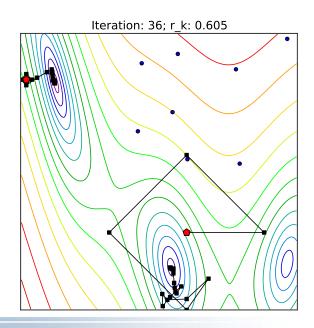


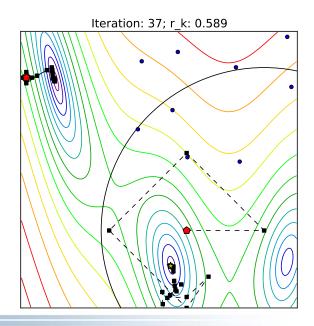


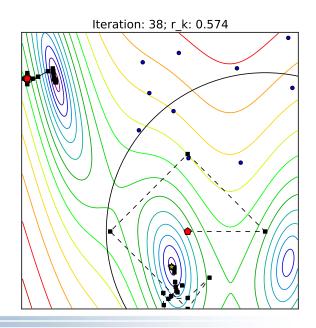


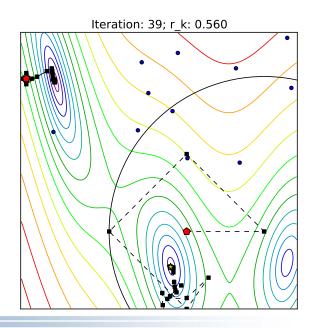


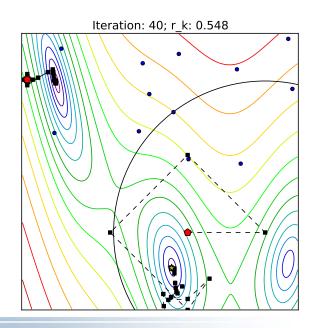


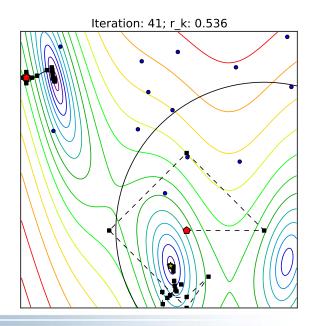


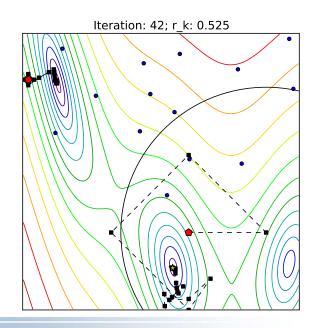


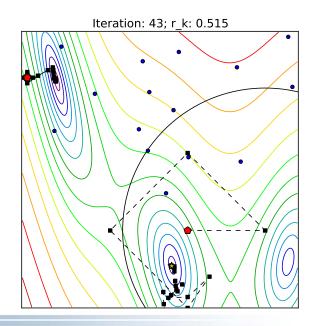


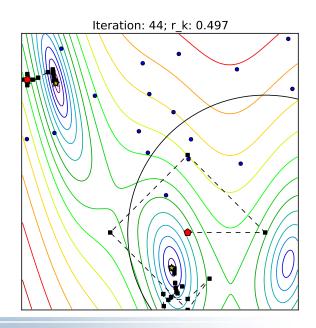


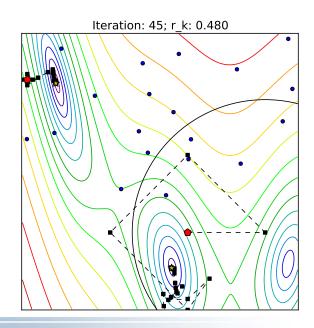


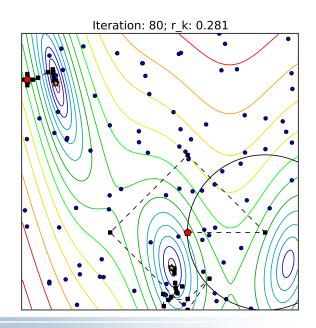


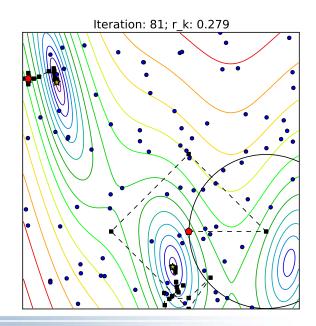


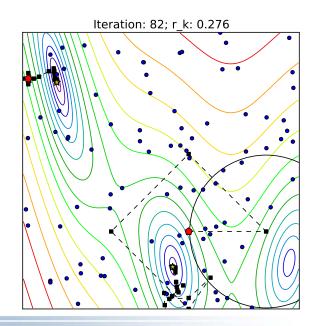


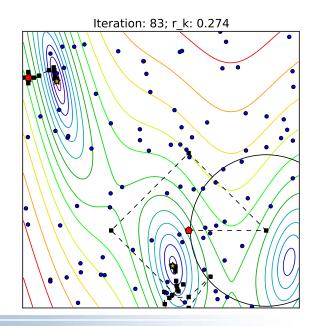


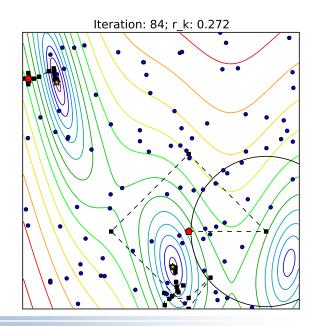


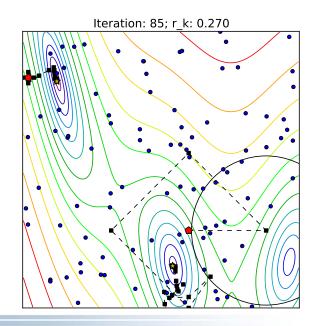


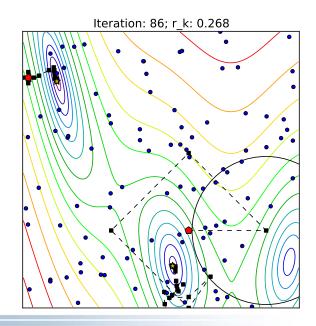


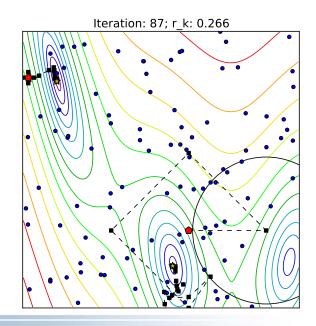


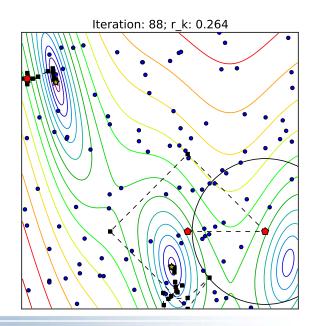


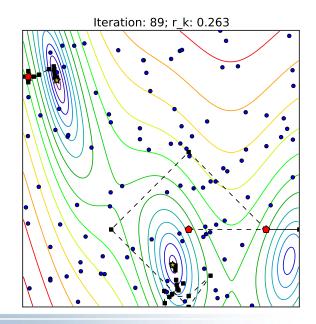


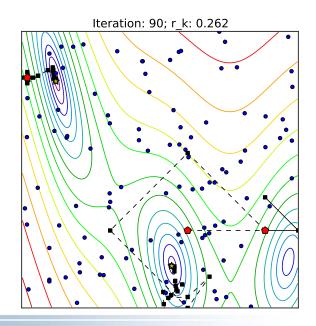


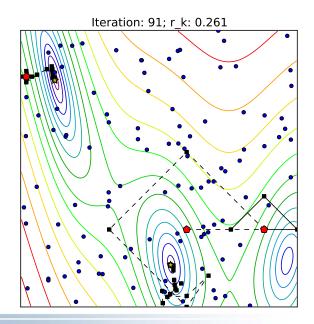


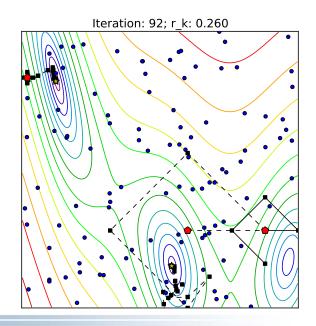


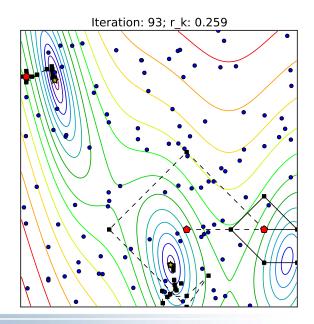


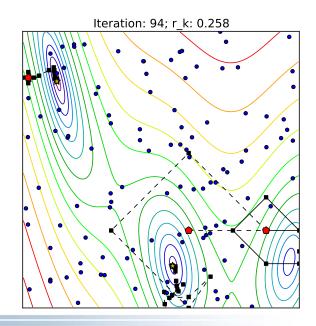


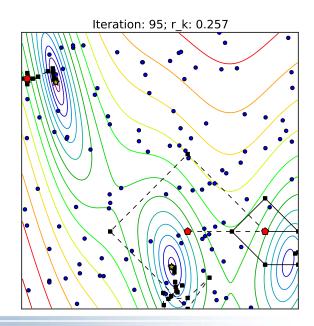


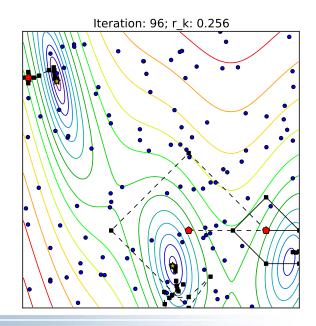


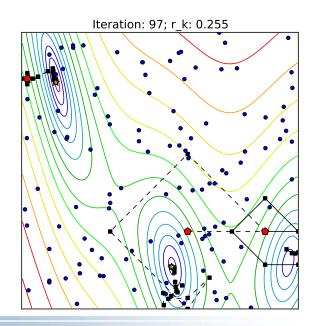


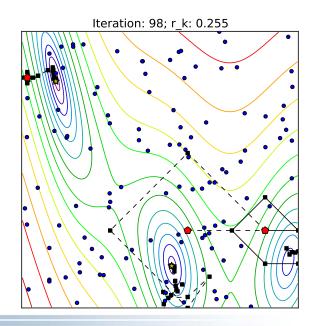


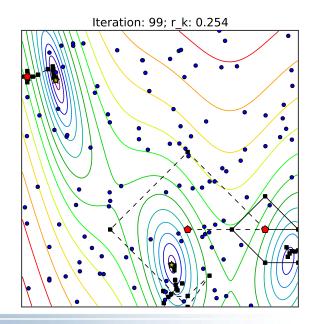












Properties of the local optimization method

Necessary:

- ► Honors a starting point
- ► Honors bound constraints

Properties of the local optimization method

Necessary:

- ► Honors a starting point
- Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Properties of the local optimization method

Necessary:

- Honors a starting point
- Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:

- Can return multiple points of interest
- Reports solution quality/confidence at every iteration
- Can avoid certain regions in the domain
- Uses a history of past evaluations of f
- ▶ Uses additional points mid-run

AAMLM

Algorithm 3: AAMLM

```
Give each worker a point to evaluate
for k = 1, 2, ... do
    Receive from (longest waiting) worker w that has evaluated f
   Update \mathcal{H}_{k} and r_{k}
   if point evaluated by w is from an active run then
       if Run is complete then
           Update X_{\nu}^*, and mark points inactive
       else
           Add the next point in its localopt run (not in \mathcal{H}_k) to Q_L
       Start run(s) at all point(s) satisfying (S1)-(S4), (L1)-(L6)
       Add the subsequent point (not in \mathcal{H}_k) from each run to Q_L
    Merge runs in Q_I with candidate minima within 2\nu of each other
    Give w a point at which to evaluate f, either from Q_I or \mathcal{R}
```

BAMLM

MLSL: (S2)-(S4)

$$\hat{x} \in \mathcal{S}_k$$

- (S1) $\nexists x \in \mathcal{L}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S2) $\nexists x \in \mathcal{S}_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (S3) \hat{x} has not started a local optimization run
- (S4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima

BAMLM: (S1)–(S4), (L1)–(L6)

$$\hat{x} \in \mathcal{L}_k$$

- (L1) $\nexists x \in \mathcal{L}_k$ $[\|\hat{x} - x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L2) $\nexists x \in S_k$ with $[\|\hat{x} x\| \le r_k \text{ and } f(x) < f(\hat{x})]$
- (L3) \hat{x} has not started a local optimization run
- (L4) \hat{x} is at least μ from $\partial \mathcal{D}$ and ν from known local minima
- (L5) \hat{x} is not in an active local optimization run and has not been ruled stationary
- (L6) $\exists r_k$ -descent path in \mathcal{H}_k from some $x \in \mathcal{S}_k$ satisfying (S2-S4) to \hat{x}

AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite number of local optimization runs with probability 1.

AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite number of local optimization runs with probability 1.

Assumption

There exists $K_0 < \infty$ so that for any K_0 consecutive iterations, there is a positive (bounded away from zero) probability of evaluating a point from the sample stream and each existing local optimization run.

AAMLM Theory

Theorem

Given the same assumptions as MLSL, AAMLM will start a finite number of local optimization runs with probability 1.

Assumption

There exists $K_0 < \infty$ so that for any K_0 consecutive iterations, there is a positive (bounded away from zero) probability of evaluating a point from the sample stream and each existing local optimization run.

Theorem

Each $x^* \in X^*$ will almost surely be either identified in a finite number of evaluations or have a single local optimization run that is converging asymptotically to it.

Measuring Performance

```
GLODS Global & local optimization using direct search [Custódio, Madeira
      (JOGO, 2014)]
    Direct Serial DIRECT [D. Finkel's MATLAB code]
pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]
  Random Uniform sampling over domain (as a baseline)
  BAMLM
        Concurrency: 4
        Local optimization method
             ▶ ORBIT [Wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
             ► BOBYQA [Powell, 2009]
        ▶ Initial sample size: 10n
```

▶ Each method evaluates Direct's 2n + 1 initial points.

Measuring Performance

Let X^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in X^*\}$. Let $x_{(i)}^*$ be the element of X^* corresponding to the value $f_{(i)}^*$.

The global minimum has been found at a level $\tau > 0$ at batch k if an algorithm it has found a point \hat{x} satisfying:

$$f(\hat{x}) - f_{(1)}^* \le (1 - \tau) \left(f(x_0) - f_{(1)}^* \right),$$

where x_0 is the starting point for problem p.

Measuring Performance

Let X^* be the set of all local minima of f.

Let $f_{(i)}^*$ be the *i*th smallest value $\{f(x^*)|x^* \in X^*\}$. Let $x_{(i)}^*$ be the element of X^* corresponding to the value $f_{(i)}^*$.

The j best local minima have been found at a level $\tau > 0$ at batch k if:

$$\left|\left\{x_{(1)}^*, \dots, x_{(\underline{j}-1)}^*\right\} \cap \left\{x_{(i)}^* : \exists x \in \mathcal{H}_k \text{ with } \left\|x - x_{(i)}^*\right\| \leq r_n(\tau)\right\}\right| = \underline{j} - 1$$
&\delta\left\{\left\x_{(\overline{j})}^*, \dots, \cdot\x_{(\overline{j})}^*\right\right\right\} \cdot\left\{\left\x_{(\overline{j})}^*, \dots, \cdot\x_{(\overline{j})}^*\right\right\right\} \cdot\left\{\left\x_{(\overline{j})}^*, \dots, \cdot\x_{(\overline{j})}^*\right\right\right\} \left\right\right\right\} \left\{\left\x_{(\overline{j})}^* \dot\x_{(\overline{j})}^* \dot\x_{(\overline{j})}

where j and \bar{j} are the smallest and largest integers such that

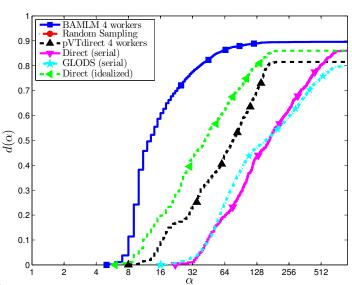
$$f_{(j)}^*=f_{(j)}^*=f_{(j)}^*$$
 and where $r_n(au)=\sqrt[n]{rac{ au\operatorname{vol}(\mathcal{D})\Gamma(rac{n}{2}+1)}{\pi^{n/2}}}.$

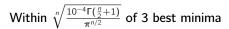
Problems considered

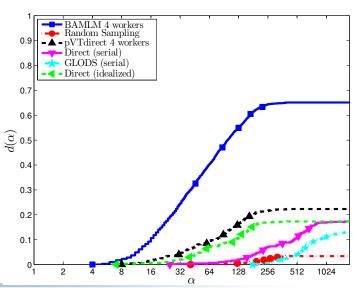
GKLS problem generator [Gaviano et al., "Algorithm 829" (TOMS, 2003)]

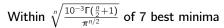
- 600 synthetic problems with known local minima
- ▶ n = 2, ..., 7
- ▶ 10 local minima in the unit cube with a unique global minimum
- ▶ 100 problems for each dimension
- ▶ 5 replications (different seeds) for each problem
- ▶ 5000 evaluations

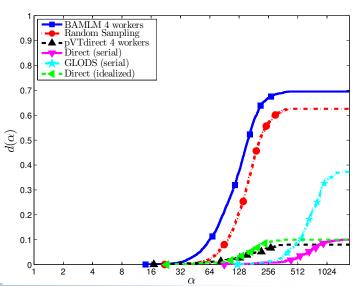
$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$

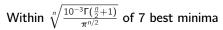


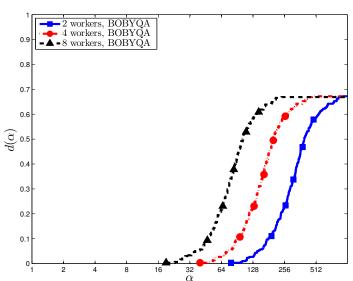


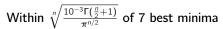


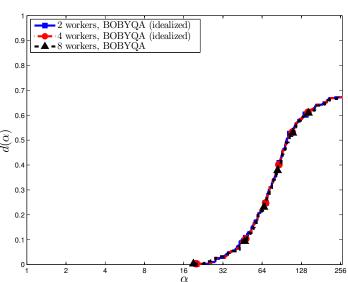


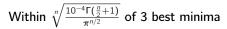


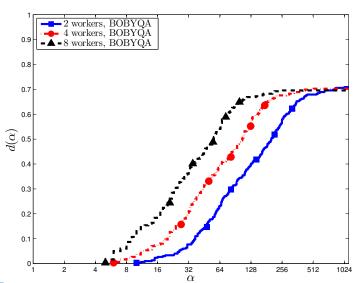


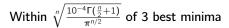


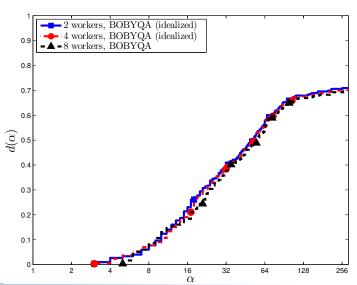


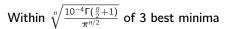


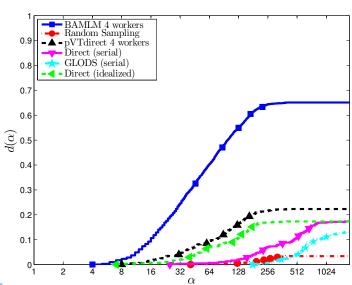




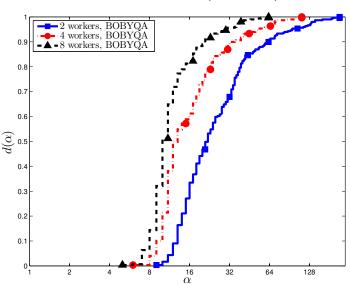




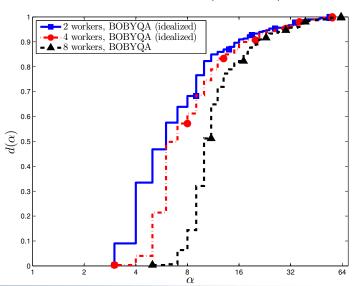




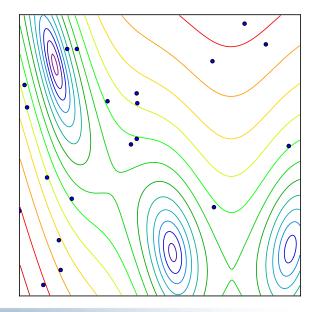
$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$



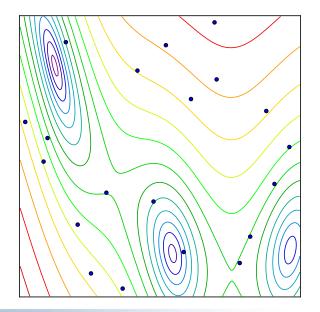
$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$



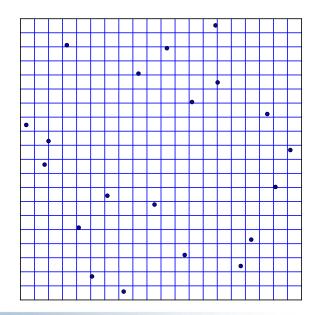
Uniform sampling



Latin hypercube sampling



Latin hypercube sampling



BAMLM with LHS

Critical distance for uniform sampling:

$$r_k = \pi^{-1/2} \left(\Gamma(1 + \frac{n}{2}) \operatorname{vol}(\mathcal{D}) \frac{\sigma \log kN}{kN} \right)^{1/n}$$

Critical distance for Latin hypercube sampling:

$$r_k = \pi^{-1/2} \left(\Gamma(1 + \frac{n}{2}) \operatorname{vol}(\mathcal{D}) \frac{\sigma N^{n-1} \log k}{k} \right)^{1/n}$$
 (2)

BAMLM with LHS

Critical distance for uniform sampling:

$$r_k = \pi^{-1/2} \left(\Gamma(1 + \frac{n}{2}) \operatorname{vol}(\mathcal{D}) \frac{\sigma \log kN}{kN} \right)^{1/n}$$

Critical distance for Latin hypercube sampling:

$$r_k = \pi^{-1/2} \left(\Gamma(1 + \frac{n}{2}) \operatorname{vol}(\mathcal{D}) \frac{\sigma N^{n-1} \log k}{k} \right)^{1/n}$$
 (2)

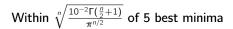
Theorem

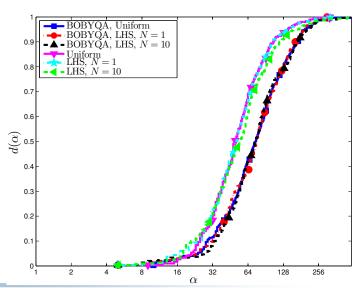
If r_k is defined by (2) with $\sigma > 4$, even if the sampling continues forever, the total number of local runs started by BAMLM (or AAMLM) is finite almost surely.

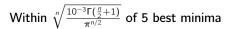
Does LHS help?

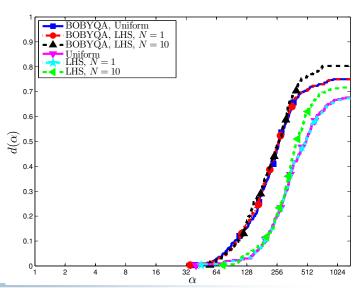
Problem setup:

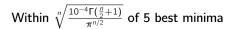
- ▶ 10 different GKLS problems
- ▶ 5 different seeds
- ▶ n = 2, ..., 7
- ► Same starting LHS sample of 10*n* points (except for uniform)
- ▶ Same (uniform) r_k value

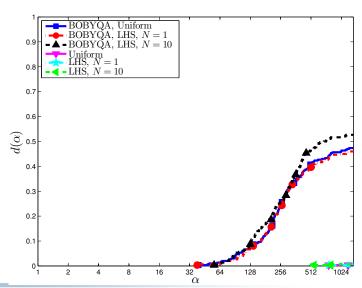


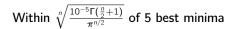


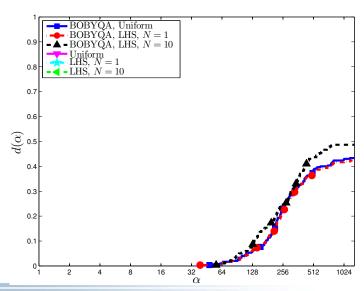


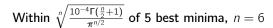


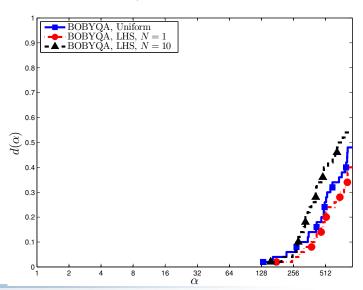


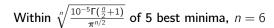


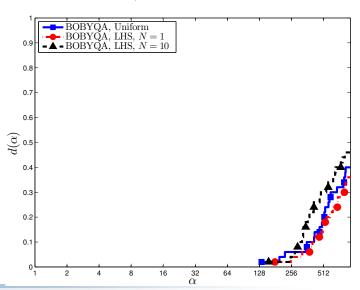


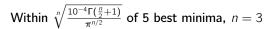


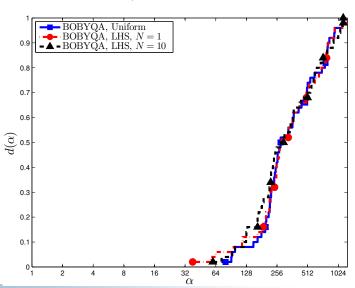


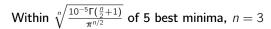


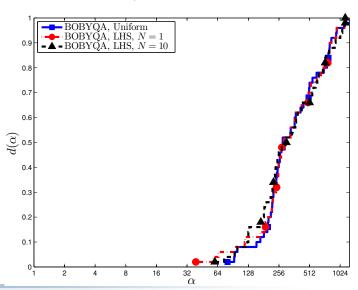




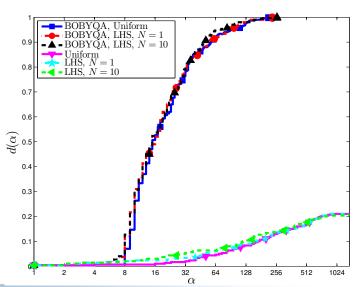




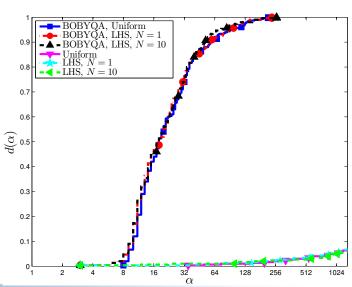




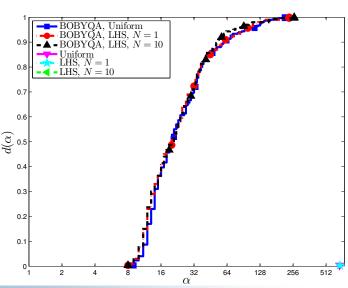
$$f(x) - f_{(1)}^* \le (1 - 10^{-2}) \left(f(x_0) - f_{(1)}^* \right)$$



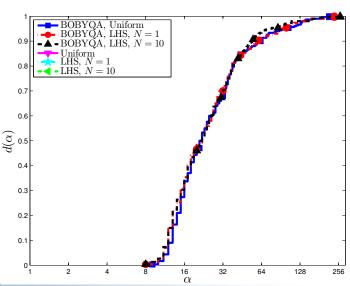
$$f(x) - f_{(1)}^* \le (1 - 10^{-3}) \left(f(x_0) - f_{(1)}^* \right)$$



$$f(x) - f_{(1)}^* \le (1 - 10^{-4}) \left(f(x_0) - f_{(1)}^* \right)$$



$$f(x) - f_{(1)}^* \le (1 - 10^{-5}) \left(f(x_0) - f_{(1)}^* \right)$$



Closing Remarks

► Concurrent function evaluations can locate multiple minima while efficiently finding the global minimum.

Closing Remarks

- Concurrent function evaluations can locate multiple minima while efficiently finding the global minimum.
- Latin hypercube sampling appears to help find more minima in higher-dimensional problems.

Questions:

- ► Finding (or designing) the best local solver for our framework?
- Best way to process the queue?

AAMLM

Algorithm 3: AAMLM

```
Give each worker a point to evaluate
for k = 1, 2, ... do
    Receive from (longest waiting) worker w that has evaluated f
    Update \mathcal{H}_k and r_k
    if point evaluated by w is from an active run then
       if Run is complete then
           Update X_k^*, and mark points inactive
       else
           Add the next point in its localopt run (not in \mathcal{H}_k) to Q_L
       Start run(s) at all point(s) satisfying (S1)–(S4), (L1)–(L6)
       Add the subsequent point (not in \mathcal{H}_k) from each run to Q_l
    Merge runs in Q_I with candidate minima within 2\nu of each other
    Give w a point at which to evaluate f, either from Q_l or \mathcal{R}
```

